

LA-UR-21-28041

Approved for public release; distribution is unlimited.

Title: Air Blast Meshing & Pressure Mapping

Author(s): Vander Wiel, Gerrit Alan

Intended for: Report

Issued: 2021-08-11

Air Blast Meshing & Pressure Mapping

Gerrit Vander Wiel

August 4, 2021

Fig. 1.

Shadowgraph captures a bullet traveling at 1.5 times the speed of sound. A pressure wave is depicted at the fore, and turbulence at the rear

Project Goals

- Mesh sensitivity study
 - Determine at what mesh density results converge
 - Build a model that reflects theoretical solutions

- Map experimental pressure data onto the surface of the cone
 - Track rigid body motion

- Stresses in conic Body
 - Observe how the model reacts to stresses different than the ones tested in the mesh sensitivity study

Mesh Sensitivity

Cantilever Beam Example

- Euler-Bernoulli beam theory
- Measured deflections

Assumptions:

- Plane sections remain planar
- Deformed angles are small

Fig. 2.

Deflection Equation

$$w(x) = \frac{qx^2(6L^2 - 4Lx + x^2)}{24EI}$$

q = distributed load

L = length

I = second moment of area

Beam Theory Results

Good correlation and signs of convergence

% Error calculated at maximum displacement:

- ≈ 80 elements 33.17%
- \approx 1,200 elements 4.19%
- \approx 13,000 elements 0.82%
- \approx 34,000 elements 0.53%

Building the Model

- Engineering Drawings
 - Simplifications
 - -0.25 in. thickness
- CUBIT python command line

Command Line

%>
%>cubit.cmd('#Closure Plate ')
%>cubit.cmd('create Cylinder height 0.25 radius 10.191176')
Successfully created cylinder volume 4
Journaled Command: create cylinder height 0.25 radius 10.191176

%>cubit.cmd('move Volume 4 z -39.681')
Moved Body 4: x 0.000000e+00 y 0.000000e+00 z -3.968100e+01
Journaled Command: move volume 4 z -39.681

%>cubit.cmd('imprint volume all ')
Preserving undo information...done
Group imprint finished.
Updated volume(s): 1, 3, 4
IMPRINT completed.

cubit.cmd(" Enter cubit command

Script / Command / Error / History /

Model built and meshed in CUBIT

Theoretical Solutions

Hoop Stress:

$$\sigma_{\theta} = \frac{ps}{h} \tan(\alpha)$$

Meridional Stress:

$$\sigma_s = \frac{ps}{2h} \tan(\alpha)$$

Radial Displacement:

$$u_r = \frac{ps^2 \sin(\alpha) \tan(\alpha)}{2Eh} (2 - v)$$

Assumptions:

- Thin Shell (h/a ≤ 1/15) \rightarrow (0.03 ≤ 0.067)
- Perfectly elastic, homogeneous, and isotropic solid
- Only loading is internal pressure
- Uniform thickness

Model Setup

Boundary Conditions:

Highlighted nodes are fixed with the listed conditions

Model Setup

Path Definition:

"s = distance of a point of the middle surface from the vertex measured along a

generator."

Coordinate Systems:

Meridional Stress(S11 tensor)

- Hoop Stress (S22 tensor)
- Radial
 Displacement
 (U1 component)

Regular Cone Comparison (3D model)

Hoop Stress 4.85%

Meridional Stress 6.20%

Radial Displacement 3.95%

False Starts

Inertia Relief

Boundary conditions led to asymmetry and stress concentrations

Base Plate

Initially an aft base plate was excluded

$$\begin{split} \sigma_1 &= \frac{qR}{2t\cos\alpha} \\ \sigma_2 &= \frac{qR}{t\cos\alpha} \\ \Delta R &= \frac{qR^2}{Et\cos\alpha} \\ \Delta S &= \frac{qR^2}{4Et\sin\alpha} (1 - 2v - 3\tan^2\alpha) \\ \psi &= \frac{3qR\tan\alpha}{2Et\cos\alpha} \end{split}$$

Initial BC's

Inertia Relief

Base Plate

False Starts

Shifting Data

Mesh Refinement Each element cut into 8 using CUBIT

12

Mesh Sensitivity Results

Hoop: 8.23, 6.84, 6.14, 6.03

Meridional: 5.01, 5.48, 5.77, 5.74

Displacement: 6.47, 11.75, 8.24, 6.28

13

Other Element types

 C3D8I elements are supposed to have better performance with bending problems

14

Pressure Mapping

- Suite of scripts for pressure mapping
 - provided by Paula Rutherford
- Time dependent pressure loading

Los Alamos National Laboratory UNCLASSIFIED 8/5/2021

Pressure Mapping Results

Rigid Body Motion

Los Alamos National Laboratory UNCLASSIFIED 8/5/2021

Next Steps

Python pressure mapping

- Build mapping script using nearest neighbor interpolation
- Compare nearest neighbor with linear interpolation.

Analyze stresses induced by the pressure load

- As pressure increases how do stresses change with
 - Environment
 - Geometry
 - Material properties

Los Alamos National Laboratory UNCLASSIFIED 8/5/2021

Works Cited

Fig. 1. https://www.nasa.gov/mission_pages/galex/20070815/f.html

Fig. 2. https://learnaboutstructures.com/Bernoulli-Euler-Beam-Theory

Los Alamos National Laboratory UNCLASSIFIED 8/5/2021